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Distinct polysomnographic and ECG-
spectrographic phenotypes embedded
within obstructive sleep apnea
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Abstract

Background: The primary metric extracted from the polysomnogram in patients with sleep apnea is the apnea-hypopnea
index (or respiratory disturbance index) and its derivatives. Other phenomena of possible importance such as periods of
stable breathing, features suggestive of high respiratory control loop gain, and sleep fragmentation phenotypes are not
commonly generated in clinical practice or research. A broader phenotype designation can provide insights into biological
processes, and possibly clinical therapy outcome effects.

Methods: The dataset used for this study was the archived baseline diagnostic polysomnograms from the
Apnea Positive Pressure Long-term Efficacy Study (APPLES). The electrocardiogram (ECG)-derived cardiopulmonary coupling
sleep spectrogram was computed from the polysomnogram. Sleep fragmentation phenotypes used thresholds of sleep
efficiency (SE)≤ 70%, non-rapid eye movement (NREM) sleep N1≥ 30%, wake after sleep onset (WASO)≥ 60 min, and high
frequency coupling (HFC) on the ECG-spectrogram≤ 30%. Sleep consolidation phenotypes used thresholds of SE≥ 90%,
WASO≤ 30 min, HFC≥ 50% and N1≤ 10%. Multiple and logistic regression analysis explored cross-sectional associations
with covariates and across phenotype categories. NREM vs. REM dominant apnea categories were identified when the
NREM divided by REM respiratory disturbance index (RDI) was > 1.

Results: The data was binned first into mild, moderate, severe and extreme categories based on the respiratory
disturbance index of < 10, 10–30, 30–60, and greater than 60, per hour of sleep. Using these criteria, 70, 394, 320 and
188 for polysomnogram, and 54, 296, 209 and 112 subjects for ECG-spectrogram analysis groups. All phenotypes were
seen at all severity levels. There was a higher correlation of NREM-RDI with the amount of ECG-spectrogram narrow
band coupling, vs. REM-RDI, 0.41 vs 0.14, respectively. NREM dominance was associated with male gender and higher
mixed/central apnea indices. Absence of the ECG-spectrogram sleep consolidated phenotype was associated with an
increased odds of being on antihypertensive medications, OR 2.65 [CI: 1.64–4.26], p = < 0.001.

Conclusions: Distinct phenotypes are readily seen at all severities of sleep apnea, and can be identified from
conventional polysomnography. The ECG-spectrogram analysis provides further phenotypic differentiation.
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Background
Traditional sleep apnea morphological categories include
obstructive, central, and periodic breathing/Cheyne-Stokes
respiration types. Conventionally, polysomnogram (PSG)
recordings are scored using 30 s epochs, into wake, rapid
eye movement (REM) and non-rapid eye movement
(NREM) stages. Respiratory events may be dominant in
NREM or REM sleep, and at times be equally severe in
both states. These events can be short, as at high altitude
(25 s or less), or long, as in congestive heart failure (often
over 60 s). NREM stages are further characterized into
grades, N1 through N3. Alternate methods of characteriz-
ing sleep include cyclic alternating pattern (CAP) of
NREM sleep (Parrino et al. 2014), and cardiopulmonary
coupling (high, low and very low frequency coupling of
autonomic and respiratory drives, modulated by cortical
delta power) (Thomas et al. 2014). Periods of stable
breathing are usually associated with N3, and always asso-
ciated with non-CAP and high frequency coupling.
The apnea-hypopnea index is the result of distinct

interacting biological processes, all of which can contrib-
ute to the severity of clinical sleep apnea individually
and collectively. These are high loop gain, low arousal
threshold, airway collapsibility, and reduced negative
pressure reflex response (Owens et al. 2015; Wellman
et al. 2013; Eckert et al. 2013). A computational method
to derive loop gain from routine PSG data was recently
proposed, based on the concept that ventilatory fluctua-
tions from apneas/hypopneas cause opposing changes in
ventilatory drive according to the loop gain (Terrill et al.
2015). It would be more useful in clinical practice if
there were features on the conventional PSG or metrics
computed from PSG signals which differentiated pheno-
types that could guide therapy. Specifically, a high loop
gain phenotype may benefit from supplemental oxygen
(Wellman et al. 2008), acetazolamide (Edwards et al.
2012), or hypocapnia minimization strategies, while
sedatives could be an option in those who have low
arousal thresholds in NREM sleep (Smales et al. 2015).
The conventional scoring criteria for central hypopnea

strongly skews the events index to obstruction-most
importantly, flow-limitation is frequently seen in periodic
breathing, even at high altitude (Weiss et al. 2009), a
quintessential model of high loop gain sleep apnea. High
loop gain apnea is NREM dominant, regardless of the
admixed obstructive features (Xie et al. 2011). Quantifying
NREM vs. REM dominance may thus provide a patho-
physiological phenotype. The oscillatory profile of respira-
tory oscillations or downstream respiration-driven or
associated oscillations such as heart rate variability, blood
pressure or even the electroencephalogram can be quanti-
fied (Maestri et al. 2010). We present use of a ECG-derived
cardiopulmonary coupling analysis to detect high loop gain
apnea independent of conventional scoring.
Respiration is stable during conventional slow wave
sleep. The state of the cortical sleep network seems
important (Thomas 2002). Increased genioglossus tone
and increases in CO2 occur during periods of stable
breathing (Jordan et al. 2009), with overt hypoventilation
and hypoxia if flow limitation is severe during stable
breathing periods. Central sleep apnea, periodic breathing,
and treatment-emergent/complex apnea are NREM sleep
phenomena. Stable breathing periods have traditionally
not been quantified-the focus has been on the various
thresholds and associations to determine clinically signifi-
cant apnea or hypopnea. We quantified stable breathing
using the ECG-based cardiopulmonary coupling tech-
nique, as described below. Stable breathing periods in
apnea patients will likely demonstrate increased upper
airway resistance. Despite the strong link between stable
breathing and stage N3, the relationship is not exclusive:
specifically, most periods of stable breathing occur in stage
N2, even in those patients with no scored N3 sleep.
It is a common clinical observation that some patients

with sleep apnea have disproportionate sleep fragmenta-
tion, and some with severe apnea demonstrate relatively
intact macro-architecture of sleep. We used a well char-
acterized sleep apnea clinical trial dataset, the Apnea
Positive Pressure Long-term Efficacy Study (APPLES)
(Kushida et al. 2006), to determine if at every severity of
sleep apnea, discernable sleep and sleep apnea pheno-
types exist. We used conventional polysomnogram
metrics complemented with an electrocardiogram (ECG)-
based analysis that can detect periods of stable breathing
(Thomas et al. 2005) and pathological respiratory chemor-
eflex activation (Thomas et al. 2007a).

Methods
Database
The APPLES data was obtained in Alice™ and European
Data Format, the latter was used for ECG-spectrogram
analysis. He study randomized just over 1000 subjects to
continuous positive airway pressure (CPAP) or placebo
CPAP. A total of 972 baseline diagnostic polysomno-
grams were obtained; a subset of the data was embar-
goed by the primary study for administrative reasons.
The following subjective and objective measures of
sleepiness, mood and cognition were available: Hamilton
Depression Scale, Epworth Sleepiness Scale, Stanford
Sleepiness Scale, Paced Auditory Serial Addition Test,
Psychomotor Vigilance Test Median and Mean reaction
times, Maintenance of Wakefulness Test, and Short
Term Working Memory.

Polysomnogram scoring
Standard scoring was done based on pre-2007 criteria on
the polysomnogram data, generating respiratory, arousal,
and sleep stage indices. The respiratory disturbance index
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used in the APPLES is equivalent to the current hypopnea
definition with a 3% oxygen desaturation and/or arousal
(Berry, 2017). We combined stage III and IV as the
equivalent of current stage N3 (slow wave sleep). In this
paper, we use the current terminology and designations to
keep with current terms used in publications, though
stage N1 and N2 will show some differences, typically
greater N1, if the data were re-scored. A breakdown of
REM and NREM RDI was also available. The characteris-
tics of the full study population have also been published
(Kushida et al. 2006; Quan et al. 2011). NREM vs. REM
dominance was computed as the ratio of NREM/REM
RDI; a value > 1 was considered NREM dominance.

ECG-spectrogram analysis
The cardiopulmonary coupling (CPC) analysis (Figs. 1
and 2) of the ECG signal was performed as previously
described in detail (Thomas et al. 2005). Briefly, heart
rate variability and ECG-derived respiration (EDR;
amplitude variations in the QRS complex due to shifts
in the cardiac electrical axis relative to the electrodes
during respiration and changes in thoracic impedance
as the lungs fill and empty) are extracted from a single
channel of ECG. Time series of normal-to-normal
sinus (N-N) intervals and the time series of the EDR
Fig. 1 Algorithm outline for the ECG-cardiopulmonary coupling analysis. The
analysis, using two distinct data streams embedded within the ECG: a
amplitude modulation as a surrogate of respiration
associated with these NN intervals are then extracted
from the original R-R (QRS to QRS) interval time series.
Outliers due to false or missed R-wave detections are
removed using a sliding window average filter with a
window of 41 data points and rejection of central points
lying outside 20% of the window average. The resulting
NN interval series and its associated EDR are then
resampled using cubic splines at 2 Hz. The cross-spectral
power and coherence of these two signals are calculated
over a 1024 sample (8.5 min) window using the Fast
Fourier Transform applied to the 3 overlapping 512
sample sub-windows within the 1024 coherence window.
The 1024 coherence window is then advanced by 256
samples (2.1 min) and the calculation repeated until the
entire NN interval/EDR series is analyzed. For each 1024
window the product of the coherence and cross-spectral
power is used to calculate the ratio of coherent cross
power in the low frequency (0.01–0.1 Hz.) band to that in
the high frequency (0.1–0.4 Hz.) band. The logarithm of
the high to low frequency cardiopulmonary coupling ratio
(log [HFC/LFC]) is then computed to yield a continuously
varying measure of cardiopulmonary coupling. The graph
of the amplitude of cardiopulmonary coupling at relevant
frequencies (ordinate) vs. time (abscissa) provides a
sleep spectrogram. Since the period of central apnea
schema describes the analytic pathway for cardiopulmonary coupling
utonomic drive via heart rate variability and respiratory ECG-R



Fig. 2 Sample ECG-spectrogram. Note high, low and very low frequency coupling (HFC, LFC and VLFC respectively) and the clear separation in
signal space of HFC from LFC/VLFC. HFC is the ECG-spectrogram signal biomarker of stable breathing and stable sleep. VLFC reflects REM or wake

Table 1 Phenotype Definitions

Phenotype Phenotype criteria

Polysomnogram chemoreflex Central apnea index≥ 5/h of sleep

Spectrogram chemoreflex Presence of narrow band elevated
low frequency coupling

Polysomnogram
fragmentation—SE

Sleep efficiency≤ 70% total sleep
time

Polysomnogram
fragmentation—N1

NREM N1 ≥ 30% total sleep time

Polysomnogram
fragmentation—WASO

Wake after sleep onset≥ 60 min

Spectrogram fragmentation High frequency coupling≤ 30%
total sleep time

Polysomnogram
consolidation—SE

Sleep efficiency≥ 90% total sleep
time

Polysomnogram
consolidation—N1

NREM N1 ≤ 10% total sleep time

Polysomnogram
consolidation—WASO

Wake after sleep onset≤ 30 min

Spectrogram consolidation High frequency coupling≥ 50%
total sleep time

SE sleep efficiency; N1 NREM stage 1; WASO wake after sleep onset
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can be as slow as 120 s or longer, we used the frequency
band between 0.006 and 0.1 Hz to define narrow spectral
band e-LFC (putative central sleep apnea, periodic breath-
ing, or complex sleep apnea). We required (1) a minimum
power in this band of 0.3 normalized units and (2) that
the coupling frequency of each pair of consecutive
measurements remains within 0.0059 Hz of each other
over 5 consecutive sampling windows (totaling 17
continuous min). Periods of e-LFC not meeting these
criteria were defined as broad spectral band e-LFC
(putative pure obstructive sleep apnea). The amounts of
broad and narrow spectral band coupling in e-LFC bands
were then expressed as the percentage of windows
detected in relation to the total sleep period. Thus, the
narrow spectral band e-LFC identified periods with oscil-
lations that have a single dominant coupling frequency,
suggesting central sleep apnea or periodic breathing
(Thomas et al. 2007a). The broad spectral band e-LFC
identified periods with oscillations that have variable
coupling frequencies, suggesting an alternative mechan-
ism, which we posited was dominance of anatomic upper
airway obstructive processes. As it takes 17 min of
continuous narrow-band cardiopulmonary coupling to
reach the detection threshold, we estimated that this
would be approximately equal to an averaged central
apnea index of 5/h of sleep, assuming 6 h of sleep
and a periodic breathing cycle length of approxi-
mately 35 s. Finally, using the mean frequency and
percentage of total sleep time in state, the LFC and
e-LFC oscillation indices and mean cycle time were
computed.

Phenotype designation
The data was binned first into mild, moderate, severe
and extreme categories based on the respiratory disturb-
ance index (respiratory events scored with a 3-s arousal
or 4% oxygen desaturation) of < 10, 10–30, 30–60, and
greater than 60, per hour of sleep. These severity groups
were chosen to capture a range from mild to most
severe. For example, ≥ 60 could be considered “ex-

treme”, but would be subsumed otherwise if ≥ 30 only
was used as a “severe” cut off. Phenotype percentages
were based on 972 and 617 subjects for polysomno-
graphic and spectrographic phenotyping, respectively.
Table 1 lists the criteria for the phenotypes. Figure 3
shows that individual phenotypes may or may not
coexist. The criteria for a sleep fragmentation phenotype
was based on clinical reasonableness, as no formal
criteria exist. On a polysomnogram, a “fragmentation



Fig. 3 Patterns of sleep fragmentation phenotype based on sleep efficiency. The upper hypnogram shows rapid sleep-wake transitions from severe
sleep apnea, while the lower hypnogram shows nearly the same sleep efficiency but with consolidated periods of wake separated by
consolidated periods of sleep. The % N1 is markedly increased in the patient with rapid transitions (44.2%). Thus, individual phenotypes
can mix and match. ROx: raw oximetry. EV: respiratory events. OxEv: Oximetry desaturation events. Hyp: sleep stage hypnogram
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phenotype” can be suggested by prolonged return to
sleep following arousals/awakenings, low sleep efficiency
(<70%), high N1, and high wake after sleep onset
(Thomas 2014). There is too little N3 to be a useful
discriminatory metric. We choose a high frequency
coupling % of ≥ 50 and ≤ 30 as thresholds for consoli-
dated and fragmented phenotypes, guided by data from
healthy individuals (Thomas et al. 2005) and analysis of
the Sleep Heart Health Study (Thomas et al. 2014;
Thomas et al. 2009).

Statistical analysis
Summary measures were mean/standard deviations for
continuous measures, and proportions for categorical
measures. T-tests were used to assess differences between
NREM and REM dominance ratios. Logistic Regression
with adjustment for age, gender, BMI, ethnicity and overall
RDI assessed Odds Ratios for different phenotypic
categories, with the following predictor categories: central
apnea index, presence/absence of narrow band coupling,
and the ECG-spectrogram sleep fragmentation category.
The full multiple regression model assessing associations
of individual phenotypes adjusted for age, gender,
ethnicity, body mass index and sleep apnea severity (RDI),
and total sleep time for PSG-based metrics. Pearson’s
Correlation estimated relationships between ECG spectro-
gram and polysomnogram indices. Chi2 test was used to
assess significant differences of phenotypes across categor-
ies of apnea severity.

Results
Demographics and polysomnography
The demographic and polysomnographic characteristics
of the subjects are described in Table 2, the 972 with
polysomnogram and the 671 with ECG-spectrogram
analysis. There were no significant differences. Loss of
ECG-spectrogram analysis occurred from the following
reasons: 1) Movement artifact or gaps, including bath-
room breaks, ≥ 10 min. Such dropouts made up the ma-
jority (86%) of lost data. 2) Signal drop out, e.g., displaced
electrode. There were no significant differences between
included and excluded subjects, in terms of demographics
and clinical conditions such as hypertension and diabetes.
Central sleep apnea, defined as CAI ≥5/h of sleep, was
noted in 47/972 (5.1%) and 30/671 (4.5%), respectively.

ECG-spectrogram characteristics
Characteristics of the APPLES is described in Table 3.
The mean cycle time calculated by the ECG spectrogram
was just over 30 s. There was a higher correlation of
NREM-RDI with the amount of narrow band coupling,
vs. REM-RDI, 0.41 vs 0.14, respectively (Table 4).

Polysomnographic and spectrographic phenotypes
There were 70, 394, 320 and 188 subjects in the four cat-
egories of increasing severity (Tables 5 and 6). The corre-
sponding sample size with the ECG-spectrogram was 54,
296, 209 and 112, respectively. The proportion of clinical
phenotypes were different across severity in some but not
all categories (Table 5). Specifically, the ECG-spectrogram
categories did not show significant changes across sever-
ity, but the polysomnogram phenotype categories did.
While no subject in the mild category had central sleep
apnea, 8% did in the most severe category.

NREM vs. REM dominance
NREM dominance of sleep apnea was observed in 26.1%
(242/671) of the cohort. The characteristics of the
NREM vs. REM dominance groups are in Table 7. Not-
able features associated with NREM dominance are: 1)



Table 2 Polysomnographic and Demographic features

Demographics and
Polysomnogram Metrics

Summary statistic
(972) Mean ± SD

Summary statistic
(671) Mean ± SD

Age 50.8 ± 12.9 50.2 ± 12.7 years

Gender 65.3% male 63.9% male

Race 70.2% white 71.7% white

Body Mass Index Kg/M2 31.8 ± 7.4 31 ± 7.1

Total sleep time (TST) 379.4 ± 66.6 385.1 ± 60.3

Sleep efficiency (% TST) 79 ± 12.6 80.1 ± 11.6%

Wake After Sleep Onset
(minutes)

83.4 ± 51.8 78.3 ± 48.3

S1 (% TST) 18.3 ± 14.6 17.3 ± 13.1

S2 (% TST) 60.3 ± 13.4 60.9 ± 12.3

S3 (% TST) 2.7 ± 4.9 2.7 ± 4.9

S4 (% TST) 0.7 ± 2.4 0.7 ± 2.4

REM (% TST) 17.9 ± 7.1 18.2 ± 6.8

Arousal Index/hour of sleep 29 ± 21.7 27.6 ± 20.8

RDI/hour of sleep 38.8 ± 27.1 36.4 ± 26.1

Obstructive apnea index/
hour of sleep

16.9 ± 21.9 15.2 ± 20.2

Central apnea index/hour
of sleep

1.1 ± 4.6 1.1 ± 4.9
(Median 0.1, 25th/75th
percentile 0. 0.1)

Mixed apnea index/hour
of sleep

1.5 ± 5.6 1.3 ± 4.8

Hypopnea index/hour
of sleep

19.3 ± 13.2 18.9 ± 13

RDI-NREM/hour of sleep 37.4 ± 28.9 34.9 ± 27.9

RDI-REM/hour of sleep 43.2 ± 26.6 42.1 ± 26.5

Oxygen desaturation
index/hour of sleep

25.5 ± 25.6 22.7 ± 24

Minimum saturation % 81 ± 9.1 81.7 ± 8.4

Time less than 85%
saturation (minutes)

2.9 ± 8.2 2.4 ± 7.5

PLM/hour of sleep 6.4 ± 15.4 6 ± 15

RDI respiratory disturbance index; REM rapid eye movement; NREM non-rapid
eye movement; PLM periodic limb movement

Table 3 ECG-spectrogram features in the APPLES

ECG-spectrogram metrics Mean ± SD
(n = 671)

High frequency coupling % TST 38.9 ± 22.3

High frequency coupling duration (minutes) 151.4 ± 92.7

Low frequency coupling % TST 43 ± 20.2

Low frequency coupling duration (minutes) 164.1 ± 82

Elevated low frequency coupling % TST 20.8 ± 17.9

Elevated low frequency coupling duration (minutes) 79.4 ± 69.3

Narrow band coupling % TST 3.4 ± 8.1

Narrow band coupling duration (minutes) 12.9 ± 31.4

Very low frequency coupling % TST 16.1 ± 7.3

Very low frequency coupling duration (minutes) 61 ± 28.2

CPC e-LFC index/hour of sleep 20.6 ± 19.3

CPC e-LFC cycle time (seconds) 30.4 ± 8.1

CPC LFC index/hour of sleep 52.4 ± 24.9

CPC LFC cycle time (seconds) 31 ± 8.4

TST total sleep time; CPC cardiopulmonary coupling; LFC low frequency
coupling; e-LFC elevated-low frequency coupling
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male gender; 2) greater degrees of sleep fragmentation;
3) more severe sleep apnea; 4) higher central and mixed
apnea indices. The presence of narrow band coupling
predicted NREM dominance, Odds Ratio 1.56 [CI:
1.1–2.29, p: 0.021], adjusted for age, gender, ethnicity,
body mass index and overall RDI. Table 8 shows the
predictors of NREM dominance, which included sleep
fragmentation (positively) and ECG-sleep consolidation
(negatively), adjusted for age, gender, BMI, ethnicity, and
overall RDI.

Predictors of phenotypes
Correlation between the measures of sleep fragmenta-
tion or consolidation are to be expected. In our sample,
the following were the r values, all p: < 0.001: WASO-N1
(0.33), WASO-sleep efficiency (−0.93), and N1-sleep effi-
ciency (−0.31). The categories of fragmentation or consoli-
dation were related but also showed independence. After
adjusting for age, gender, race, body mass index, total
sleep time and sleep apnea severity, using logistic regres-
sion, the following were noted: 1) Sleep fragmentation: a)
efficiency-N1: OR 1.89 [CI: 0.94–3.79], p: 0.072; b)
efficiency-WASO: OR 4.19 [1.18–14.86], p: 0.027; c) N1-
WASO: OR 2.18 [1.24–3.83], p: 0.007. 2) Sleep consolida-
tion: a) efficiency-N1: OR 2.6 [CI: 1.68–4.03], p: < 0.001;
b) efficiency-WASO: OR 50.19 [24.26–103.84], p: < 0.001;
c) N1-WASO: OR 1.96 [0.97–3.05], p: 0.07.
In a multiple regression analysis adjusted for age, gen-

der, ethnicity, body mass index and sleep apnea severity
(RDI), age was a consistent positive predictor of sleep ef-
ficiency, wake after sleep onset and N1 fragmentation
categories. Coefficient ± SE, p was 0.007 ± 0.001; p: <
0.001; 0.015 ± 0.001, p: < 0.001; and 0.004 ± 0.001, p: <
0.001, respectively. Male sex was predictive for N1 sleep
fragmentation category; 0.06 ± 0.03, p: 0.020. Central
apnea category was predicted by age (0.001 ± 0.001 per
year, p: 0.024) and male sex (0.048 ± 0.016, p: 0.003).
In a logistic regression analysis (Table 9), the central

apnea category increased the odds of ECG-spectrogram
fragmentation phenotype, and reduced that of the N1
PSG consolidation phenotype. The presence of narrow
band coupling increased the odds of the N1 and the
ECG-spectrogram fragmentation phenotypes, while re-
ducing the odds of the ECG-spectrogram consolidation
phenotype. Finally, the ECG-spectrogram fragmentation
phenotype increased the odds of the N1 fragmentation



Table 4 Correlation (r) of ECG-spectrogram and PSG respiratory indices

CPC metric RDI NREM-RDI REM-RDI CAI/hour of sleep Desaturation Index/hour
of sleep

LFC index 0.50
[p: 0.021

0.52
[p: 0.024]

0.20
[p: 0.043]

0.21
[p: 0.041]

0.44
(p: 0.001)

e-LFC index 0.56
[p: 0.02]

0.59
[p: 0.001]

0.22
[p: 0.041]

0.25
[p: 0.031]

0.50
[p: 0.001]

e-LFCNB 0.39
[p: 0.021]

0.41
[p: 0.001]

0.14
[p: 0.071]

0.19
[p: 0.043]

0.36
P: [0.013]

LFC cycle time −0.01
[p: 0.601]

−0.01
[p: 0.311]

0.01
[p: 0.212]

−0.01
[p: 0.311]

−0.02
[p: 0.511]

e-LFC cycle time 0.09
[p: 0.413]

0.09
[p: 0.211]

0.08
[p: 0.412]

0.02
[p: 0.121]

0.41
[p: 0.013]

LFC low frequency coupling; e-LFC elevated low frequency coupling; RDI respiratory disturbance index; REM rapid eye movement sleep; NREM non-rapid eye movement
sleep; CAI central apnea index; CPC cardiopulmonary coupling
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phenotype and reduced the odds of the N1 and WASO
consolidation phenotypes.

Cycle time influences
The cycle time of LFC (30.4 ± 8.1) and e-LFC (31 ± 8.4)
was not significantly different across various sleep frag-
mented or consolidated phenotypes, or NREM vs. REM
dominance (the latter 31 ± 8.8 vs. 31 ± 8.2, p: 0.99). Those
with narrow-band coupling had a shorter cycle time than
those without, 27.5 ± 5.7 vs. 32.8 ± 8.8 s, p: < 0.001 for
LFC, and 27.8 ± 6.8 vs. 32.6 ± 8.7 s, p: < 0.001, for e-LFC.

Phenotypes and clinical baseline covariates
The total Epworth Sleepiness Scale was modified by
NREM vs. REM dominance: 9.2 ± 4.2 vs. 10.2 ± 4.3, t-
Table 5 Polysomnographic and spectrographic metrics across apne

Polysomnographic variable Mild (n = 70) Moder

Total Sleep Time (minutes) 386 ± 68 376 ± 6

Sleep efficiency % TST 80.9 ± 13.3 79 ± 12

Arousal index/hour of sleep 14.2 ± 10.4 19.8 ±

S1 % TST 11.4 ± 7.9 14 ± 8.

S2 % TST 63.6 ± 8.4 62.6 ±

S3 + S4 % TST 5.5 ± 7.2 4 ± 6.7

REM % TST 19.4 ± 6.6 19.2 ±

RDI/hour of sleep 5.5 ± 2.7 19.1 ±

CAI/hour of sleep 0.8 ± 0.2 0.3 ± 1

Minimum SaO2 87.7 ± 11.5 84.8 ±

ECG-spectrographic variable n = 54 n = 296

HFC % TST 50.8 ± 19.6 44.5 ±

LFC % TST 29.4 ± 13.8 35.7 ±

e-LFC % TST 11.1 ± 10.1 15.3 ±

e-LFCNB % TST 0.02 ± 0.07 1.2 ± 2

VLFC % TST 17.6 ± 7.1 17.6 ±

WASO wake after sleep onset; N1 stage 1 NREM sleep; CAI central apnea index; S2-S
movement; LFC low frequency coupling; VLFC very low frequency coupling; e-LCF e
test, p: 0.009. A multiple regression with adjustment for
age, gender, body mass index, ethnicity, and total RDI
remained significant: Beta Coefficient -0.003 ± SE 0.38,
p: 0.009. Absence of the ECG-spectrogram sleep consoli-
dated phenotype was associated with an increased odds
of being on antihypertensive medications, OR 2.65 [CI:
1.64–4.26], p: < 0.001, adjusted for age, gender, BMI,
total sleep time, and slow wave sleep (pre 2007 stages
S3 + S4). The difference in high frequency coupling in
those with and without the ECG-spectrogram consoli-
dated phenotype was substantial and clinically meaningful,
50.7 ± 22.4 vs. 37.3 ± 21.8% total sleep time. Evening
and morning systolic and diastolic blood pressures were,
however, not significantly different. Other phenotypes at
baseline including all cognitive measures did not show
a severity groups (mean ± SD)

ate (n = 394) Severe (n = 320) Extreme (n = 188)

4 388 ± 63 368 ± 74

.8 80.1 ± 11.1 76.4 ± 14.2

12.1 29 ± 15.3 53.9 ± 28.6

4 18.1 ± 11.2 30.6 ± 22.5

9.7 60.6 ± 11 53.7 ± 20.9

3 ± 5.4 1.7 ± 4.3

6.5 18.2 ± 6.8 13.9 ± 7.2

5.8 44 ± 8.7 83.6 ± 17.6

1.2 ± 3 3.2 ± 9.3

5.1 79.7 ± 7.5 72.7 ± 10.6

n = 209 n = 112

21 36.9 ± 20.8 22.1 ± 19.7

16.2 45.6 ± 17.8 62.8 ± 21

11.5 22.3 ± 16.2 37.3 ± 25.2

.7 3.8 ± 8.5 9.9 ± 13.3

7.4 15.2 ± 6.9 12.9 ± 6.9

4 pre-2007 NREM sleep stages; HFC high frequency coupling; REM rapid eye
levated-low frequency coupling; e-LFCNB narrow band e-LFC



Table 6 Phenotypes across sleep apnea severity categories

Phenotype across apnea severity categories Mild Moderate Severe Extreme Chi2, p, for phenotypes
across categories

Chemoreflex phenotype—PSG (CAI≥ 5/hour of sleep) 0 (0%) 1 (0.25%) 13 (4.1%) 15 (8%) 44.86,
<0.001

Chemoreflex phenotype—spectrogram (e-LFCNB present) 4 (7.4%) 70 (23.7%) 75 (23.4%) 67 (35.6%) 4.83,
0.19

Sleep fragmentation phenotype—sleep efficiency≤ 70% 13 (18.6%) 82 (20.8%) 53 (16.6%) 48 (25.5%) 6.16,
0.10

Sleep fragmentation phenotype—N1≥ 30% 3 (4.3%) 24 (6.1%) 45 (14.1%) 76 (40.4%) 124.78,
<0.001

Sleep fragmentation phenotype—WASO≥ 60 min 38
(54.3%)

240
(60.9%)

196
(61.3%)

136
(72.3%)

10.42,
0.02

Sleep fragmentation phenotype—spectrogram (HFC≤ 30%) 9 (16.7%) 75 (25.3%) 80 (38.3%) 79 (70.5%)

Sleep consolidation phenotype—sleep efficiency≥ 90% 22 (31.4%) 76 (19.3%) 55 (17.2%) 27 (14.4%) 9.89,
0.02

Sleep consolidation phenotype—N1≤ 10% 42 (60%) 157 (39.9%) 85 (26.6%) 33 (17.6%) 58.01,
<0.001

Sleep consolidation phenotype—WASO≤ 30 min 15
21.4%)

57
(14.5%)

34
(10.6%)

15
(8%)

11.08,
0.01

Sleep consolidation phenotype—spectrogram (HFC≥ 50%) 28 (51.9%) 126 (42.6%) 61 (29.2%) 15 (12.3%) 2.46,
0.48

WASO wake after sleep onset; N1 stage 1 NREM sleep; CAI central apnea index; HFC high frequency coupling; LFC low frequency coupling; e-LFCNB narrow band e-LFC

Table 7 NREM vs. REM dominance: clinical and polysomnographic features

Demographics and Polysomnogram Metrics NREM dominant (242) REM dominant (429) p

Age (years) 51.2 ± 13.9 49.6 ± 11.9 0.11

Gender (male %) 80.2 55.7 <0.001 (Chi2)

Race (white, %) 74.8 69.9 0.10

Body Mass Index Kg/M2 30.6 ± 6.7 31.3 ± 7.3 0.25

Total sleep time (TST) 282.8 ± 64 386.4 ± 58.1 0.46

Sleep efficiency % TST 79.2 ± 12.2 80.7 ± 11.1 0.10

S1 % TST 21.7 ± 16.8 14.9 ± 10.1 <0.001

S2 % TST 58.3 ± 15.5 62.3 ± 9.8 <0.001

S3+ S4 % TST 2.1 ± 3.8 3.1 ± 5.3 0.005

REM 17.1 ± 6.7 18.9 ± 6.7 0.002

Arousal Index/hour of sleep 36.5 ± 26.1 22.6 ± 15.1 <0.001

RDI/hour of sleep 49.9 ± 29.9 28.8 ± 20.1 <0.001

Obstructive apnea index/hour of sleep 25 ± 15.4 9.6 ± 13.7 <0.001

Central apnea index/hour of sleep 2 ± 7.2 0.5 ± 2.1 <0.001

Mixed apnea index/hour of sleep 3 ± 7.4 0.4 ± 1.5 <0.001

Hypopnea index/hour of sleep 19.9 ± 14.5 18.3 ± 11.9 0.11

RDI-NREM/hour of sleep 52.9 ± 30.5 24.7 ± 20.3 <0.001

RDI-REM/hour of sleep 34.5 ± 25.3 46.5 ± 25.3 <0.001

Oxygen desaturation index/hour of sleep 34 ± 29.6 16.4 ± 17.2 <0.001

Minimum saturation 79.5 ± 10.3 82.9 ± 6.8 <0.001

Time less than 85% saturation (minutes) 4.8 ± 11.5 1 ± 2.6 <0.001

PLM/hour of sleep 5.8 ± 12.5 6.2 ± 16.2 0.77

All values mean and standard deviation, unless other specified
S1-S4 Pre-2007 NREM sleep stages; RDI respiratory disturbance index; REM rapid eye movement NREM: non-rapid eye movement; PLM periodic limb movement
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Table 8 Predictors of NREM dominance

Phenotype NREM dominance (OR), p

PSG SF—SE 1.16 [CI: 0.72–1.86], 0.527

PSG SF—N1 1.72 [CI: 1.01–2.93], 0.046*

PSG SF—WASO 0.90 [CI: 0.61–1.34], 0.614

ECG SF 1.53 [CI: 1.04–2.25], 0.029*

PSG SC—SE 0.92 [CI: 0.58–1.50], 0.758

PSG SC—N1 0.91 [CI: 0.61–1.35], 0.643

PSG SC—WASO 0.81 [CI: 0.47–1.43], 0.483

ECG SC 0.44 [CI: 0.29–0.67], <0.001*

Central sleep apnea + 1.96 [CI: 0.78–4.91], 0.152

e-LFCNB + 1.56 [CI: 1.07-2.29], 0.022

Adjusted for age, gender, body mass index, ethnicity, respiratory
disturbance index
CI confidence intervals; NREM non-rapid eye movement sleep PSG:
polysomnographic; SE sleep efficiency; N1 NREM stage 1; WASO wake after
sleep onset; ECG electrocardiogram-based analysis; SC sleep consolidation; SF
sleep fragmentation; e-LFCNB elevated-low frequency coupling narrow band
* Statistically significant
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differences in clinical covariates. The evening systolic
blood pressure was higher in the NREM-dominant group,
125.3 ± 14.7 vs. 122.6 ± 14.7 mm Hg, but was no longer
significant after adjustment for age.

CPAP compliance
Use of CPAP during the last month of the 6-month trial
was 4.2 ± 2.2 h, and 3.9 ± 2.1 h across the entire
duration. The percentage of use of CPAP for 4 or more
hours, average of all subjects, was 55 ± 20%.
Mean compliance across the 6 months was lower in

those with the sleep fragmentation-N1 group, 3.6 ± 2 vs.
4 ± 2.1 h. Other categories had no impact.

Discussion
The results of our analysis show that discernable pheno-
types are present within what is otherwise considered
generic obstructive sleep apnea. Fragmented and consol-
idated phenotypes are see at milder and more severe
Table 9 Predictors of Primary Phenotypes

Phenotype CAI (OR), p

PSG SF—SE 1.03 [CI: 0.41–2.62], 0.939

PSG SF—N1 1.70 [CI:0.71–4.09], 0.228

PSG SF—WASO 1.07 [CI:0.46–2.48], 0.882

ECG SF 3.69 [CI:1.58–8.64], 0.003*

PSG SC—SE 0.51 [CI:0.14–1.78], 0.288

PSG SC—N1 0.26 [CI:0.08–0.87], 0.029*

PSG SC—WASO 0.25 [CI:0.03–1.91], 0.182

ECG SC 0.31 [CI:0.09–1.04], 0.057

CI confidence intervals; PSG polysomnogram; ECG electrocardiogram; N1 NREM stag
consolidation; SE sleep efficiency; CAI central apnea index; e-LFCNB elevated-low freq
* Statistically significant
extremes of obstructive sleep apnea, using both conven-
tional and computed analysis of polysomnogram signals.
Presumptive high loop gain phenotypes, central sleep
apnea on polysomnography and narrow-band coupling
on ECG-spectrogram, are associated with greater de-
grees of sleep fragmentation. Stage dominance, NREM
vs. REM shows clear differences. Cycle time metrics pro-
vide further insight into pathological interactions that
result in a final common output, that of an apnea-
hypopnea index. Several aspects of extractable pheno-
types provide novel insights into sleep apnea.
Periods of stable breathing during NREM sleep
Some clues to the nature of this phenomenon can be
gained from the concept of NREM sleep bimodality. The
first clue came from the description of CAP and
non-CAP from Italian researchers in the mid 1980’s
(Terzano et al. 1985). CAP and non-CAP periods occur
across NREM sleep. CAP occurs in N1 and parts of N2;
non-CAP occurs in parts of N2 and most of N3 (Parrino
et al. 2014). Subsequently, the autonomic and respiratory
associations of CAP/non-CAP were described (Kara
et al. 2003). Finally, the description of the cardiopulmo-
nary coupling technique showed that NREM sleep has
bimodal characteristics in health and disease. High
frequency coupling is associated with high delta power,
non-CAP EEG, stable breathing, strong sinus arrhythmia,
and blood pressure dipping (Thomas et al. 2014). Low
frequency coupling is associated with unstable breathing,
cyclic variation in heart rate, CAP EEG, and blood
pressure non-dipping. Thus, stable breathing periods
reflect natural integrated network states of the brain.
Benzodiazepines and related drugs increase non-CAP
(Parrino et al. 1997; Terzano et al. 1995), and may be
expected to increase stable breathing periods. Zolpidem
increases blood pressure dipping (Huang et al. 2012), and
could do so through the induction of stable NREM
periods.
e-LFCNB (OR), p ECG SF (OR), p

0.88 [CI: 0.56–1.37], 0.566 1.37 [CI: 0.90–1.12], 0.144

2.97 [CI:1.86–4.74], < 0.001* 1.95 [CI:1.22–3.13], 0.005*

0.99 [CI:0.69–1.43], 0.975 1.34 [CI:0.93–1.93], 0.111

2.06 [CI:1.47–2.93], < 0.001*

0.89 [CI:0.57–1.38], 0.593 0.72 [CI:0.46–1.13], 0.155

0.64 [CI:0.44–0.92], 0.018 0.61 [CI:0.42–0.88], 0.009*

1.01 [CI:0.61–1.69], 0.955 0.57 [CI:0.33–0.97], 0.040*

0.28 [CI:0.18–0.43], < 0.001*

e 1; SF sleep fragmentation; WASO wake after sleep onset; SC sleep
uency coupling, narrow band
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The proportion of stable breathing periods will impact
the computed apnea-hypopnea index, as these periods
do not contribute to the metric. Varying proportions of
stable breathing on a night to night basis can contribute
to night to night variability of the apnea-hypopnea index.
The fact that even at the most severe end of the
spectrum there are patients with consolidated sleep by
any measure suggests that this is an individual trait.
NREM vs. REM dominance
In general, periodic breathing and hypocapnic central
apnea does not occur in REM sleep (exception, a patient
with congestive heart failure who demonstrates periodic
breathing during wake state). NREM dominance is well
described in idiopathic central sleep apnea (Quadri et al.
2009), periodic breathing associated with heart failure or
stroke (Hanly et al. 1989), opiate-induced sleep apnea
(Walker et al. 2007), and high altitude periodic breathing
(Thomas et al. 2007b). NREM dominance is also a
feature of complex apnea/treatment-emergent central
sleep apnea, regardless of the exact definition used (Rao
& Thomas 2013). In the APPLES data, NREM domin-
ance was associated with greater severity of disease, male
sex, and increased central/mixed apneas, even if less
than the conventional threshold for central sleep apnea
was used (which requires ≥ 50% of all events to be
central). It is possible that NREM dominant obstructive
sleep apnea reflects high loop gain (Rao & Thomas
2013; Stanchina et al. 2015), and is thus a recognizable
phenotype from standard polysomnograms even without
further computational analysis.
Accurate estimation of central sleep apnea from clinical
polysomnograms
In the APPLES data, the amount of central apnea/pre-
sumed high loop gain features estimated by conventional
features vs. ECG-spectrogram diverged markedly. The
American Academy of Sleep Medicine (AASM) criteria
defines a central apnea as an oronasal flow drop by > 90%
of baseline, lasting 10 s, in the absence of inspiratory
effort. (Iber & American Academy of Sleep Medicine
2007) A central hypopnea requires proportional and con-
cordant flow and effort reduction and absence of snoring
(except possibly at recovery) and flow-limitation. However,
events both at sea level (often) and high altitude (always)
in patients with positive pressure induced or amplified
respiratory instability have short cycles that are less than
30 s. If 40 s is a requirement, then these short-cycle
hypopnea events will be falsely characterized as ob-
structive. The International Classification of Sleep
Disorders (ICSD)-3 specifies that these should make
up ≥ 50% of all scored events, so substantial central
events can still carry an obstructive summary label.
The scoring guidelines state that flow limitation
excludes a “central hypopnea” in the scoring manual yet
several lines of evidence argue strongly against this: a) at
high-altitude, a pure chemoreflex form of sleep apnea,
flow-limitation occurs frequently; b) studies using
esophageal manometry and endoscopy show that
pharyngeal airway narrowing and occlusion occur during
central apneas in healthy individuals as well as in
patients with heart failure. c) the airway can close during
polysomnographic central apnea; (Badr 1996; Badr et al.
1995) d) central hypopneas demonstrate flow-limitation
(Badr et al. 1995; Sankri-Tarbichi et al. 2009; Guilleminault
et al. 1997; Dowdell et al. 1990). Despite the known
presence of flow limitation and airway narrowing during
both central and obstructive events (Dempsey et al. 2014),
hypopnea scoring is biased towards obstructive disease
(Rao & Thomas 2013; Eckert et al. 2007; Javaheri &
Dempsey 2013).
The APPLES scoring did not include central hypop-

neas and thus likely underestimated high loop gain
features. The ECG-spectrogram analysis showed that
central/periodic breathing-type oscillations were present
in nearly one third of the APPLES cohort, and that this
signal biomarker was more closely associated with
NREM than REM RDI. The shorter cycle time in the
e-LFCNB group is consistent with short-cycle periodic
breathing being associated with NREM dominant sleep
apnea and high loop gain (Gilmartin et al. 2005).

A sleep fragmentation phenotype
A distinct sleep fragmentation phenotype was evident at
all severities of obstructive sleep apnea. This result is
generally consistent with the variability of arousal
phenomena in sleep apnea, contributing to amplification
of disease, especially in NREM sleep (Eckert & Younes
2014). While low arousal threshold is a measurable sleep
apnea phenotype (Eckert et al. 2013), the return to sleep
after arousal is probably just as important. Recovery
from arousal is a continuous process of variable dynam-
ics (Younes & Hanly 2016; Younes et al. 2015), and if
delayed, the epoch will be scored as wake or N1/S1. If
this phenotype is a trait, sedatives may have a role in
management, similar to reducing the apnea-hypopnea
index in NREM sleep in those with low arousal
threshold (Smales et al. 2015). As no physiological
sleep apnea trait estimates were performed in the
APPLES, concordance or discordance of a low arousal
vs. sleep fragmentation phenotype could not be deter-
mined. High N1 fragmentation phenotype was associ-
ated with reduced compliance.

A need for improved phenotyping
From a diagnostic standpoint, there is minimal relation-
ship of the AHI with subjective or objective sleepiness
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measurements (Gottlieb et al. 1999; Eiseman et al. 2012).
From a treatment standpoint, predicting paradoxical PAP
response (complex apnea) is not reliably predicted stand-
ard metrics, but is predicted by CPC metrics (Thomas
et al. 2007a). Diagnostic phenotyping is important for ap-
propriate clinical case detection, epidemiology, and
clinical trial planning purposes. Treatment phenotypes
should reasonably focus on response to therapy, positive
pressure or otherwise. Persistence of phenotypes or
conversion of one phenotype to another can have clinical
implications. For example, a fragmentation phenotype
which persists may benefit from sedatives, cognitive
behavioral therapy or re-looking at therapeutic precision,
while a fragmentation to consolidated phenotype shift
implies therapeutic success. Therapies can target
driving phenotypes to more desirable ones, e.g., acetazol-
amide for a high loop gain/NREM-dominant phenotype
(Edwards et al. 2012).

Phenotypes and clinical covariates
The slightly lower subjective sleepiness score in NREM
dominant sleep apnea is largely in keeping with lesser
degrees of subjective sleepiness in patients with strong
respiratory chemoreflex activation. Heart rate variability
and muscle sympathetic nerve activity are inversely
related to subjective sleepiness in heart failure (Taranto
Montemurro et al. 2012; Taranto Montemurro et al.
2014). The tight link of the respiratory chemoreflex and
sympathetic centers in the brainstem is one plausible
explanation-that these individuals have heightened
sympathetic drive for a given degree of sleep apnea. In-
creased hypertension risk in those with reduced high
frequency coupling, a signal biomarker of stable
breathing and sleep, could reflect the impact of longer
periods of stable breathing and the associated vagal dom-
inance, even in those with sleep apnea, on overall blood
pressure control.
The relative lack of impact of the various phenotypes

on any measure of cognition was a surprise. This result
may reflect the characteristics of the APPLES population
which resulted in a negative result in the primary study
(CPAP vs. placebo CPAP). The mechanisms which
impair cognition and mood in sleep apnea are not well
understood, and likely reflect an interaction of the stres-
sor and individual resilience factors. Our result may also
reflect our current inability to identify the factors associ-
ated with a certain apnea-hypopnea index which
determines an adverse impact on brain function. The
APPLES follow-up data we aim to analyze may provide
additional clues.

Limitations of the analysis
The primary limitation of the presented analysis is that
the impact of phenotypes on outcomes cannot be
determined. The criteria for various phenotype categor-
ies were necessarily arbitrary but are “clinically reason-
able”. Moreover, if these patterns are maintained over
time despite positive pressure therapy is important to
know, and will need further follow-up analysis of the
APPLES data. Body position effects were not quantified.
Respiratory Effort Related Arousal events were not
scored in the APPLES, and could alter some of our con-
clusions. Careful scoring of periodic breathing without
the filter of flow limitation may provide higher estimates
of loop gain than standard scoring. A more detailed ana-
lysis of compliance metrics across the 6 months, includ-
ing differentiating sham vs. real CPAP, will be required
to establish an impact of phenotypes described here.

Conclusions
Distinct phenotypes of fragmentation, consolidation,
NREM vs. REM dominance, and high loop gain can be
identified in the conventional polysomnogram, by both
standard scoring and estimates of cardiopulmonary
coupling. Baseline clinical characteristics including
cognition were not impacted by the phenotypes. The
impact of these phenotypes on treatment clinical
outcomes require analysis and research.
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